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~generalized integral Abel equation

NASA TT F-11,775

ABEL'S GENERALIZED EQUATION AND THE CAUCHY
KERNEL EQUATION

S. G. Samko

ABSTRACT: This work represents an investigation of the
normal solvability of Abel's generalized integral equation
from the standpoint of its relationship to the Cauchy
kernel equation, where all functions are assumed to be
real. The relations involved in this study are presented
and the pertinent equations are derived.
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In this study we will investigate the normal solvability of the /1019

Y

M«p—u( )S “’"’;’);.4- ()S“‘"" +To= F(z) (1)

-

and of its conjugate equation

ey G PO g m‘N"dt T*% = F, (),
M.‘P=§(,._q» )(: = HE=n 2)

making use of the relationship of these equations to the Cauchy kernel equa-

' tion. Equation (1) was first solved for T = 0 by K. D. Sakalyuk [5]. The

rigid limitations imposed in reference [5] on u, v, and F were relaxed by L.B.
Wolfersdorf [6]. F.V. Chumokev [7] also obtained several results for the com-
plete equation (1) , (under the rigid {assumptions relative to

T, u, v, and F). Henceforth all functions will be considered as real functions.

1 Numbers in the margin indicate pagination in the foreign text.




I. Let 0 <a<1and a<x<b, Wewill then make the following

definitions:

-

Y L
—_ o) dt 1 ) (z) dt
JC!? [‘ (a) 5 (:l: )l-a Izb? =‘:= T (a) S z)l'a ..'., -

‘.- 5 R .
- t)yde i —
A¢W= 5 ‘ ( e Bn‘l’ SL‘-B_EF‘% (f)df L {

C so=Lte® 4
,»:--'S(P='—“—S‘_zdt ST ' E

rap == (z-—:d)cp(x), o - (b;—z)(p(z), C rpe= (zt—a) (b —z2)q(2). ,

Lemma 1. Operators (3) - (5) are related by the identities

B,ip‘ __t.g( )A. (—LSr“’cp) {——tg( )rq S('—Acq))

A;‘b— etg (c“)Ba( M »r(l“)ﬂ?) ctg( ) rivon ( !

L .\_: ST I:b(p = cos (an) I3:9 +sin (an) I“ ——Sr,,(p,

- I‘.':‘P = cos (an) I°w—-sin (an) .__s,,,q,,
) “—1:" I:S;TS’IQ(P’ . )
. . ' ) . - ". V‘

r“_"“.”" . '

(3)

(4)

)

(6)

(7)
(8)
(9)

(10)

(11)

The proof of identities (6) - (11) is based on the fact that after the

interchange of the order of integration in the iterated integrals in (6) - (11),

then intrinsic integrals are obtained which are easily expressed through

elementary functions!. Identities (6) - (11) are valid? if ¢ € L_(p))
where L (o) is a class of functions that are summable in [a, b] to the p > 1

power relatlve to the weight p(t) and used in the theory of the Cauchy kernel

equation [3].

3

1 For (8) - (11) we may use formula 3.228 from reference [8].

For (6) - (7)
we obtain intrinsic integrals by solving the following equations:

digs (1 —2) cag (on/ 2)@(e) —S9 =0, g (a5 2)W(2) — S(sign (¢ —1)y(0)) = 0.

2 For all x€(a, b) if p > 1/a ‘and almost everywhere if p <1/a.
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IT. By using the relationships (6) - (11), equations (1) and (2) are
reduced to congugate equations with the Cauchy kernel. We will consider three
means by which this reduction is accomplished.

A. By writing (1) - (2) in the form

Illl I:F ____’_,
U q>+v vP+Te=ra—gmFi an

112"(”111)-!- 15 (ug) + Ty = —-’——p“

r¢d—

(1—n) 2"

and applying identities (8) and (10) to (1') and (9) to (2') we obtain
. a,fD-}-a,rb (12)
: a;\l?—- ,_F aro a:\p-i-l(\p fx, ‘, f, (13)

where
: . 1!
K= TI‘S‘“"’ O =1IFy, H=TEYF,  ay(z) -_I‘(i— u(z) =
—v(z)cospr],’ ax(z) =T(1— p,)s]n(pn)v(a:) “)[ ( )
Operator T must satisfy the condition

TIf¥ 1, (14)

where T1 is a completely continuous operator in the given space of the func-

tions of ¢ (explained below).

B. If, however, we apply (9) and (11) to (1') and (8) to (2') we will
obtain

bx‘X. bar

'.b;¢+_ e ““b,¢+K.¢ fi»

is the operator of fractional differentiation, the inverse of I(l_u).

lI-(l-]J)
X ax




where

K= TP, = 150, =T, hi@)=TU -0 -
— u(z) cos prt], ba(z) = T'(1 — p) sin (pn)u(z),

and, as in (14), we should require that

T gbl_"‘»le. (14|)
C. Now, by writing (1) - (2) in the form
+
(1)
u 4
A (—w) b, (—— W) +Te=F (2
and applying (6) to (1'") and (2"), we have /1021
de dyrtiHIns P Q + KQ=F,
dﬂl’ + (1—p)/z Sr‘l-mn‘P + K:‘P fa»
where . .
\ Ky = TA‘ Ty R =A10, fs=_A_{;',.Fu dy=(u+4v)/2, . d=
‘ = ctg(un/2) (u—v) /2.
We require here that

It can be shown by using identities (6) - (11) that the requirements (14),
(14'), and (14") are equivalent. The simple sufficient condition for satisfying
(14), (14') and (14'") is defined below.




Lemma 2. Let

L re ({1 gema,

- (e (& D=t <2, |
S lage ne—a t>e,

where I T gt ,
O0<<vi<y, [0ci/dl] <const/|z—t], i=1, 2.

Then the kernels of operators (14), (14!'), and (14") are represented as the
sum of the degenerate kernel and the kernel with weak singularity.

We will note that metheds A and B differ only slightly. They are pre-
ferable to method C, since their solution requires only that we solve the
Abel equation (classic), whereas with the third method we are required to
solve the more complex equation, namely, Al_u¢'

III. Operator M is completely continuous and, therefore, has no limited
regularization. Consequently [4], M is not a Noether operator in the usual

sense. For equations (1) and (2), however, the Noether theorems may be
encountered in special spaces.

The conclusions below are made on the basis of the reduction in II of
equations (1) and (2) to equations with the Cauchy kernel. Let X and Y _be
spaces of functions in which the Noether theorem is applicable to equations
(12) and (13). (For example, X and Y are classes of Holder functions com-
bined into (a, b) [1, 2] or conjugate spaces Lp(p) and Lq (p19) [3].) Let

X first be such that there exists p > 1 and weight p(t)(exactly as in
reference [3], page 12) for which Z,(p) 2 1507 (X).

We will then designate BX = I;il'u)(x). The following is then valid.!

Theorem 1. Let

u(z), v(z) en,. X}i-—p., v F(z) EX,'_f:(J;) VY. |

The Noether theorems for equations (1) and (2) will be satisfied if the solu-
tions of (1) are found in the space B, and the solutions of (2) are found in
Y. The subscript of equation (1) in %his case is equal to that of equation

(12).

1
Assuming ‘that uz(x) + vz(x) # 0.



In Lemma 3 we will give the necessary criterion such that

I (x)c 2, ()
Lemma 3. Let u(z), v(z), F(z) e B 3> 1 — B, and let
— 1, Clz—0)
V(z) 2“‘. G,(z-f;O) ?
where o . . : .
Gla) = { (5 — o) (4 — 470, 2 [0, B
' 1, L zezﬂa b]
1f —11<:§(a)<11.-—1<5Y(b)<;lh then all Holder solutions

of ¢ in (a,b) of equation (12) 2 represented in the form

%)
@ = It o (z— @)% (b — z)“iqo(z), qolz) & M1,

ve=min(p—1, p—1+ y(a)), vo = min (0, y(b)):

We may eliminate the requlrement -that u(x) and v(x) be smooth by assumlng
that the solution of (1) 1is in the class of generalized functions. Now

X=%p(p),p>1 and p(t) = (b —1)~Pi-¥gy(t), where the weight of pO(t) is

taken from the function G(i), following the example of reference [3], page 85,
and let Bbe the space of generalized fractional derivatives of the 1-u power
from the functions of Lp(p) (of the functionals ¢ = 3(1-u) over the class of

basic functions ¥(x) of the form ¥(x) = I}ld;u v, V& Lq(ol'q)):

(9, ') = (Lo, ‘r) =(O, I3* )= (O, b

By determining the operators (3) - (5) in the space B in the required
manner, it is easy to show that identities (6) - (11) are also valid for
¢ € B and, consequently, the reduction to equation (12) remains valid.

Theorem 2 yields a basic result.

Theorem 2. Let u(x), v(x) be continuous to [a,b] fl € Lq(pl-q),
F(x) € Lp(p) and let T be a completely continuous operator from B in L (o).

Then, for equatlon (1) and (2), the Noether theorems are satisfied in the
spaces B and Lq(p ~4) respectively.

/1022



Theorem 3. Let Rs be the regulator of equation (12). Then the operator

R=1 I
a S

X
regularization from the left results in an equation which is regular in

B: RMg = ¢ + Tsp = RF, and regularization from the right results in an

equation which is regular in  £,(p): ARD =0+ TL.®=F Ty and T are

completely continuous operators in B and Lp(p), respectively.

In conclusion I wish to express my sincere gratitude to Professor F.D.
Gakhov, who supervised this work.
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is the regulator (both left and right) of operator M, whereupon
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